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We introduce an asymmetric classical Ginzburg–Landau model in a bounded
interval, and study its dynamical behavior when perturbed by weak spatiotem-
poral noise. The Kramers escape rate from a locally stable state is computed as
a function of the interval length. An asymptotically sharp second-order phase
transition in activation behavior, with corresponding critical behavior of the
rate prefactor, occurs at a critical length ac, similar to what is observed in sym-
metric models. The weak-noise exit time asymptotics, to both leading and sub-
dominant orders, are analyzed at all interval lengthscales. The divergence of the
prefactor as the critical length is approached is discussed in terms of a crossover
from non-Arrhenius to Arrhenius behavior as noise intensity decreases. More
general models without symmetry are observed to display similar behavior,
suggesting that the presence of a ‘‘phase transition’’ in escape behavior is a
robust and widespread phenomenon.

KEY WORDS: Fokker–Planck equation; non-Arrhenius behavior; stochastic
escape problem; stochastic exit problem; stochastically perturbed dynamical
systems; spatiotemporal noise; droplet nucleation; fluctuation determinant; ins-
tanton; false vacuum; stochastic Ginzburg–Landau models.

1. INTRODUCTION

Noise-induced transitions between locally stable states of spatially extended
systems are responsible for a wide range of physical phenomena. (1) In clas-
sical systems, where the noise is typically (but not necessarily) of thermal
origin, such phenomena include homogeneous nucleation of one phase
inside another, (2) micromagnetic domain reversal, (3–5) pattern nucleation in
electroconvection (6) and other non-equilibrium systems, (7) transitions in



hydrogen-bonded ferroelectrics, (8) dislocation motion across Peierls
barriers, (9) instabilities of metallic nanowires, (10) and others. In quantum
systems, the problem of tunneling between metastable states is formally
similar, and problems of interest include decay of the false vacuum (11) and
metastable states in general, (12) anomalous particle production, (13) and
others.

The modern approach to these problems, beginning with the work of
Langer on classical systems (2) and Coleman and Callan on quantum
systems, (11) considered systems of infinite spatial extent (for a review, see
Schulman (14)). In certain systems, however, finite size may lead to impor-
tant modifications, and in some instances qualitatively new behavior.
Approaches to noise-induced transitions between stable states in finite
systems modelled by nonlinear field equations have been investigated by a
number of authors. (15–19)

In a recent paper, (20) Maier and Stein studied the effects of weak white
noise on a bistable classical system of finite size whose zero-noise dynamics
are governed by a symmetric Ginzburg–Landau f4 double-well potential.
Their surprising result was the uncovering of a type of second-order phase
transition in activation behavior at a critical value Lc of the system size.
That a crossover in activation behavior must take place is clear from both
simple physical and mathematical arguments (cf. Section 2). What is not so
obvious is that the crossover is an asymptotically sharp, second-order
phase transition in the limit of low noise. The change of behavior arises
from a bifurcation of the transition state, from a zero-dimensional (i.e.,
constant) configuration below Lc, to a spatially varying (degenerate) pair of
‘‘periodic instantons’’ above Lc.

The quantitative effects of the transition are significant. In the weak-
noise limit, the activation rate is given by the Kramers formula
C ’ C0 exp(−DW/E), where E is the noise strength, DW the activation
barrier, and C0 the rate prefactor. The barrier DW is interpreted as the
height, in dimensionless energy units, of the transition state, and by
analogy with chemical kinetics, the exponential falloff of the rate is often
called ‘‘Arrhenius behavior.’’ The dependence on system size L of DW
changes qualitatively at Lc. Also, the rate prefactor C0 diverges as Lc is
approached both from above and below. Precisely at Lc, C0 becomes
E-dependent in such a way that it diverges as E Q 0. This is ‘‘non-Arrhe-
nius’’ behavior. (For boundary conditions that give rise to a zero mode,
such as periodic, there is in addition a noise dependence of C0 above Lc,
and the prefactor divergence as L Q L+

c may be affected.)
Given the increasingly anomalous behavior of the escape rate as Lc is

approached from either side, a few words should be said about the domain
of validity of the Kramers formula C ’ C0 exp(−DW/E) for the escape
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rate, which displays Arrhenius behavior with both C0 and DW independent
of E. Strictly speaking, this formula is asymptotically valid, that is, only in
the limit E Q 0. In a looser sense, the formula can often be applied to phy-
sical situations when the noise strength E is both small compared to DW,
and so that the prefactor C0 is small compared to exp(−DW/E). These
represent minimal requirements; in all cases applications need to be made
with care. For a fuller discussion on these and related issues, see ref. 21.
For the models presented here, a discussion of the regions of validity of all
derived formulae will be presented in Section 4.3.

A question that naturally arises is whether this critical behavior is
generic: could it depend on special features of the potential studied in
ref. 20, in particular its f Q −f symmetry? It was noted (20) that in more
complicated models, (19) the transition may become first-order; in others, it
could conceivably disappear altogether. The purpose of this paper,
however, is to provide support for the claim that the transition found in
ref. 20 is at least not confined to models with f Q −f symmetry; that it
should in fact appear in a wide range of models and corresponding physical
situations. To support this, a nonsymmetric f3 model will be studied and
solved, and a second-order transition similar to that found in ref. 20 will be
uncovered. This will be followed by a brief discussion of general nonsym-
metric Ginzburg–Landau models with smooth polynomial potentials up to
degree four, and it will be argued that this second-order transition should
appear in typical representations of these models.

2. THE MODEL

We consider on [−L/2, L/2] a classical field f(x, t) subject to the
potential

V(f)=−af+1
3 cf3 (1)

as shown in Fig. 1.
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Fig. 1. Potential for the reduced field u(x, t).
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The time evolution of the field is governed by the stochastic, over-
damped Ginzburg–Landau equation

ḟ=ofœ+a − cf2+E1/2t(x, t), (2)

where t(x, t) is white noise, satisfying Ot(x1, t1) t(x2, t2)P=
d(x1 − x2) d(t1 − t2). The zero-noise dynamics satisfy ḟ=−dH/df, with the
energy functional

H[f] — F
L/2

−L/2
[1

2 o(fŒ)2 − af+1
3 cf3] dz. (3)

Scaling out the various constants by introducing the variables
x=[(ac)1/4/o1/2] z, u=`c/a f, and E0=o1/2a5/4/c3/4 yields

H[u]/E0=F
a/2

−a/2
[1

2 (uŒ)2 − u+1
3 u3] dx (4)

where a=[(ac)1/4/o1/2] L.
It is already clear that a crossover in activation behavior must occur.

In the limit a Q 0 the gradient term in the integrand of the energy in Eq. (4)
will diverge for a nonuniform state; while for a Q . the V(u) term will
diverge for a uniform state. In this paper we will employ periodic boundary
conditions throughout, and it is clear that there must be a crossover from a
uniform to a nonuniform transition state as a increases from 0. Physically,
the crossover arises from a competition between the bending and bulk
energies of the transition state.

This crossover will be analyzed in succeeding sections; we will see that
it corresponds to an asymptotically sharp, second-order phase transition in
the activation rate. Both stable and transition states are time-independent
solutions of the zero-noise Ginzburg–Landau equation, that is, they are
extremal states of H[f], satisfying

uœ=−1+u2. (5)

As already noted, we will assume periodic boundary conditions
throughout. So there is a uniform stable state us=+1, and a uniform
unstable state uu=−1. In the next section we will see that the latter is the
transition state for a < ac=`2 p. At ac a transition occurs, and above it
the transition state is nonuniform.
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3. THE TRANSITION STATE

Following the notation of ref. 20, we denote by uinst, m(x) the spatially
varying, time-independent solution (‘‘instanton state’’) to the zero-noise
extremum condition Eq. (5), for any m in the range 0 [ m [ 1. The instan-
ton state is (see Fig. 2)

uinst, m(x, x0)=
(2 − m)

`m2 − m+1
−

3

`m2 − m+1
dn2 5 x − x0

`2 (m2 − m+1)1/4
: m6 ,

(6)

where dn( · | m) is the Jacobi elliptic function with parameter m, whose half-
period equals K(m), the complete elliptic integral of the first kind. (22)

Accordingly, imposition of the periodic boundary condition yields a rela-
tion between a and m:

a=2 `2 (m2 − m+1)1/4 K(m). (7)

The minimum length that can accommodate this condition is
ac=`2 p, corresponding to m=0. In this limit, dn(x | 0)=1, and the ins-
tanton state reduces to the uniform unstable state uu=−1. As m Q 1−,
a Q ., and the instanton state becomes

uinst, 1(x)=1 − 3 sech2 1x − x0

`2
2 (8)

as shown in Fig. 3. As we will see, the instanton given by Eq. (6) is a
saddle, or transition state, above ac; it will be seen to have one unstable
direction (in addition to a zero mode resulting from translational symme-
try). Physically, it can be thought of as a pair of domain walls, each of
which separates the two uniform states over a region of finite extent.
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Fig. 2. The instanton state uinst, m(x) for m=1/2.
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Fig. 3. The instanton state uinst, 1(x) on the infinite line.

For small but nonzero noise strength the leading-order asymptotics in
the escape rate from the metastable well are governed by the energy differ-
ence between the transition state, which is uu=−1 below ac and uinst, m(x)
above, and the stable state us=+1. (A stability analysis justifying these
identifications will be given in Sections 4.1 and 4.2.) In the Kramers
formula in Section 1, the activation barrier DW, which governs exponential
dependence of the escape rate on the noise strength, equals twice this
energy difference. So below ac, DW/2E0=(4/3)a. Above ac, we find

DW
2E0

=(H[uinst, m(x)] −H[us=1])=52 − 3m − 3m2+2m3

3(m2 − m+1)3/2 +
2
3
6 a (9)

+
12 `2

5(m2 − m+1)1/4
52E(m) −

(2 − m)(1 − m)
(m2 − m+1)

K(m)6 , (10)

where E(m) is the complete elliptic integral of the second kind. (22) The
activation barrier for the entire range of a is shown in Fig. 4. As a Q .,
DW/2E0 Q 24 `2/5; this value is simply the energy of a pair of domain
walls.

4. RATE PREFACTOR

For an overdamped multidimensional system driven by white noise,
the rate prefactor C0 can be computed as follows (21, 23) (see also refs. 2 and
14). As in ref. 20, let js denote the stable state, and let ju denote the tran-
sition state; it will be assumed (as is the case here) that this state has a
single unstable direction. Consider a small perturbation g about the stable
state, i.e., j=js+g. Then to leading order ġ=−Lsg, where Ls is the
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Fig. 4. The activation barrier DW/2E0 for periodic boundary conditions (solid line). The
dashed line indicates the crossover from the uniform transition state to the instanton transi-
tion state at ac, and the dotted line an extension to the region a > ac of the activation energy
corresponding to the uniform state.

linearized zero-noise dynamics at js. Similarly Lu is the linearized zero-
noise dynamics around ju. Then (21, 23)

C0=
1

2p
=:det Ls

det Lu

: |lu, 1 |, (11)

where lu, 1 is the only negative eigenvalue of Lu, corresponding to the
direction along which the optimal escape trajectory approaches the transi-
tion state. In general, the determinants in the numerator and denominator
of Eq. (11) separately diverge: they are products of an infinite number of
eigenvalues with magnitude greater than one. However, their ratio, which
can be interpreted as the limit of a product of individual eigenvalue quo-
tients, is finite.

4.1. a < ac

In this regime, both the stable and transition states are uniform,
allowing for a straightforward determination of C0 by direct computation
of the determinants. Using reduced variables, the stable state us=+1 and
the transition state uu=−1. Linearizing around the stable state gives

ġ=−L̂[us] g=−(−d2/dx2+2) g, (12)
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and similarly

ġ=−L̂[uu] g=−(−d2/dx2 − 2) g (13)

about the transition state. The spectrum of eigenvalues corresponding to
L̂[us] is

l s
n=2+

4p2n2

a
2 n=0, ± 1, ± 2... (14)

and the eigenvalues corresponding to L̂[uu] are

lu
n=−2+

4p2n2

a
2 n=0, ± 1, ± 2... . (15)

This simple linear stability analysis justifies the claims that us is a
stable state and uu a transition state, or saddle point. Over the interval
[0, ac) all eigenvalues of L̂[us] are positive, while all but one of L̂[uu] are.
Its single negative eigenvalue lu

0=−2 is independent of a, and the corre-
sponding eigenfunction, which is spatially uniform, is the direction in con-
figuration space along which the optimal escape path approaches uu.

Putting everything together, we find

C0=
1
p

=: <.

n=−. (2+4p
2n2

a
2 )

<.

n=−. (−2+4p
2n2

a
2 )

:

=
1
p

sinh(a/`2)

sin(a/`2)
, (16)

which diverges at lc=`2 p as expected; in this limit, C0 ’ const ×
(ac − a)−1. The divergence arises from the vanishing of the pair of eigen-
values lu

± 1 as a Q a
−
c (each eigenvalue contributing a factor (ac − a)−1/2).

This indicates the appearance of a pair of soft modes, resulting in a trans-
versal instability of the optimal escape trajectory as the saddle point is
approached.

4.2. a > ac

Computation of the determinant quotient in Eq. (11) is less straight-
forward when the transition state is nonconstant. This occurs when a > ac,
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where the transition state uu is given by Eq. (6), and its associated linear-
ized evolution operator is

L̂[uu]=−
d2

dx2+
2(2 − m)

`m2 − m+1
−

6

`m2 − m+1
dn2 5 x − x0

`2 (m2 − m+1)1/4
: m6 .

(17)

Evaluation of C0 therefore requires determination of the eigenvalue spec-
trum of L̂[uu] with periodic boundary conditions.

An additional complication follows from the infinite translational
degeneracy of the instanton state (i.e., invariance with respect to choice of
x0). This implies a soft collective mode in the linearized dynamical operator
L̂[uu] of Eq. (17), resulting in a zero eigenvalue. Removal of this zero
eigenvalue can be achieved with the McKane–Tarlie regularization proce-
dure (18) for functional determinants.

That procedure is implemented as follows (see ref. 18 for details). Let
y1(x, x0; m) and y2(x, x0; m) denote two linearly independent solutions of
L̂[uu] yi=0, i=1, 2. Let detŒ L̂ refer to the functional determinant of the
operator L̂ with the zero eigenvalue removed. Then, with periodic bound-
ary conditions, it is formally the case that

detŒ L̂

Oy1 | y1P
=

y2(z+a) − y2(z)
y1(z) det H(z)

(18)

where z is arbitrary, Oy1 | y1P=>a/2
−a/2 dx y2

1(x, 0; m) is the square of the
norm of the zero mode and det H(z)=ẏ2(z) y1(z) − ẏ1(z) y2(z) is the
Wronskian. (The expression (18) is meaningful only as part of a determi-
nant quotient; see below.)

Solutions y1 and y2 of L̂[uu] yi=0 can be found by differentiating the
instanton solution (6) with respect to x0 and m, respectively; i.e.,
y1(x, x0; m)=“uinst, m(x, x0; m)/“x0 and y2(x, x0; m)=“uinst, m(x, x0; m)/“m.
The homogeneous solutions are then

y1(x, x0; m)=−
6mb(m)3

`2
sn 5b(m)(x − x0)

`2
: m6 cn 5b(m)(x − x0)

`2
: m6

× dn 5b(m)(x − x0)

`2
: m6 (19)
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and

y2(x, x0; m)

=−
3mb(m)6

2
+

3b(m)2

(1 − m)
sn2 5b(m)(x − x0)

`2
: m6 dn2 5b(m)(x − x0)

`2
: m6

+
3(2m − 1) b(m)6

2
dn2 5b(m)(x − x0)

`2
: m6

+3b(m)2 sn 5b(m)(x − x0)

`2
: m6 cn 5b(m)(x − x0)

`2
: m6

× dn 5b(m)(x − x0)

`2
: m6

×
˛ (2 − m) b(m)5 (x − x0)

2 `2
−

E 1b(m)(x − x0)

`2
: m2

1 − m

ˇ
, (20)

where b(m)=(m2 − m+1)−1/4 and E( · | m) is the incomplete elliptic
integral of the second kind. (22) Inserting these solutions into Eq. (18) yields

:detŒ L̂[uu]
Oy1 | y1P

:=(m2 − m+1)11/4

9m2(1 − m)
52E(m)

1 − m
−

(2 − m) K(m)
m2 − m+1

6 . (21)

Using a similar procedure (see the Appendix of ref. 18), we find the
corresponding numerator for the determinant ratio in Eq. (11) to be

det L̂[us]=4 sinh2(a/`2), (22)

consistent with the numerator of Eq. (16), obtained through direct compu-
tation of the eigenvalue spectrum. We emphasize again, however (cf. the
discussion above Eq. (16)), that it is only the ratio of the determinants that
is sensible, not the individual determinants themselves: these each diverge
for every a. In contrast, the expressions in Eqs. (21) and (22) are well-
behaved for all finite a > ac (m > 0), but still separately diverge in the a Q .

(m Q 1) limit. Nevertheless, here also the divergences cancel to give

lim
m Q 1

=: det L̂[us]

detŒ L̂[uu]
:=24 `2/`Oy1 | y1P. (23)
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We next compute the eigenvalue lu, 1 corresponding to the unstable
direction. With the substitution w=b(m)(x − x0)/`2, the eigenvalue
equation L̂[uu] g=lg becomes

d2g/dw2+12 dn2[w | m] g=Eg (24)

where E=−2l/b(m)2+4(2 − m). Using the identity (22) dn2[z | m]=
1 − m sn2[z | m], we observe that Eq. (24) is the l=3 Lamé equation, (24, 25) a
Schrödinger equation with periodic potential of period 2K(m). Its Bloch
wave spectrum consists of four energy bands, and its eigenfunctions can be
expressed in terms of Lamé polynomials. (24) A fuller discussion, especially
for higher l-values, is given in ref. 26; for our purposes here we do not need
to utilize the full machinery of the Hermite solution (a detailed treatment is
given in ref. 24).

It is easy to check that the eigenvector gu1
with smallest eigenvalue is

gu, 1(x, x0; m)=dn3 5b(m)(x − x0)

`2
: m6+C(m) dn 5b(m)(x − x0)

`2
: m6

(25)

where C(m)=−[2(2 − m)/5]+(1/5) `4m2 − m+1, and

lu, 1=−[1
2 (2 − m)+`4m2 − m+1] b(m)2, (26)

which approaches −2 as m Q 0 in agreement with the single negative
eigenvalue of Eq. (15).

As noted in ref. 20, the full translational symmetry of the periodic ins-
tanton state in the periodic boundary condition case corresponds to a ‘‘soft
mode,’’ resulting in appearance of a zero eigenvalue lu, 2=0 of the operator
L̂[uu]. (The corresponding eigenfunction gu, 2 is given by y1 in Eq. (19).)
Physically, this corresponds to zero translational energy of the instanton;
i.e., it can appear anywhere in the volume (in contrast with, say, Dirichlet
boundary conditions, where the instanton is ‘‘pinned.’’) This should result
in an overall factor of a, indicating that the physical quantity of interest
above ac is the transition rate per unit length. The general procedure for
including this correction is described by Schulman. (14) (Our case differs by a
factor of 2 from his due to the lack of symmetry in our model.) The net
result is to multiply the prefactor by

z=aOy1 |y1P
1/2/`pE. (27)
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The most important qualitative changes are the E−1/2 factor, leading to a
non-Arrhenius transition rate above ac, and the effect on the behavior as
a Q a

+
c ; both will be discussed in more detail below.

The above discussion also makes clear that it is not necessary to sepa-
rately evaluate Oy1 | y1P. For completeness’ sake, however, we present it as
well. Its evaluation is straightforward and yields

Oy1 | y1P=
72 `2 b(m)

15
E(m) −

36 `2 b(m)5 (m2 − 3m+2)

15
K(m) (28)

which equals 24 `2/5 in the m Q 1 limit.
Putting everything together, we find the rate per unit length prefactor

for a > ac to be

C0/a=
E−1/2

p3/2

3m(1 − m)
(m2 − m+1)11/8

51
2

(2 − m)+`4m2 − m+16

×= sinh2(2(m2 − m+1)1/4 K(m))
2(m2 − m+1) E(m) − (2 − m)(1 − m) K(m)

. (29)

The prefactor over the entire range of a is plotted in Fig. 5. The pre-
factor divergence has a critical exponent of 1 as a Q a

−
c . Above ac the pre-

factor is non-Arrhenius everywhere, and the vertical axis is rescaled to
account for the singular E1/2 behavior.
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Fig. 5. The Kramers rate prefactor C0. Because of the qualitative change in behavior, from
Arrhenius to non-Arrhenius, at ac, different vertical scales are used below and above the tran-
sition.
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Fig. 6. The Kramers rate prefactor C0 per unit length above ac.

The rescaled prefactor above ac as a function of m is shown in Fig. 6,
in order to indicate more clearly the m Q 0 (a Q a

+
c ) behavior.

The behavior of the rate prefactor C0 for all a > ac is unusual in two
ways. First, it is non-Arrhenius—that is, it scales as E−1/2 for all E Q 0.
Second, it does not formally diverge as a Q a

+
c , as seen in Fig. 6 (in fact, the

divergence is present but ‘‘masked,’’ as discussed below). Both of these
features are consequences of the translation-invariance of the periodic
boundary conditions used here, and would not appear if translation-
noninvariant boundary conditions, such as Dirichlet or Neumann, are
used. (See, for example, Fig. 3 of ref. 20.)

Such boundary condition-dependent behavior should be distinguished
from the boundary condition-independent formal divergence of the prefac-
tor as the critical length is approached, as explained below, and of the non-
Arrhenius behavior (to be discussed in Section 4.3 below) exactly at the
critical length. By boundary condition-independent, we mean behavior that
is seen in all four of the most commonly used boundary conditions in this
type of problem, namely periodic, antiperiodic, Dirichlet, and Neumann;
all were considered for symmetric quartic potentials in ref. 27. In the
present case of periodic boundary conditions, the removal of the zero mode
that is present for all a > ac renormalizes the prefactor by the factor z in
Eq. (27). This renormalization masks the divergence of the determinant
ratio as a Q a

+
c , because the factor z includes the Jacobian of the transfor-

mation (14) from the translation-invariant normal mode to the variable x0;
this in turn equals the norm `Oy1 | y1P, which vanishes as m Q 0. The
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crucial point is that a divergence is still embedded within the prefactor, in the
sense that the square root of the determinant ratio diverges with a critical
exponent of 1/2 as a Q a

+
c . Upon closer examination, this arises from the

lowest stable eigenvalue, lu, 3, of det LŒ[uu] approaching zero as a Q a
+
c , in

a similar fashion to the eigenvalue behavior below ac (cf. n=± 1 in
Eq. (15)). This eigenvalue and its corresponding eigenfunction gu, 3 are
given by

gu, 3(x, x0; m)=dn3 5b(m)(x − x0)

`2
: m6+CŒ(m) dn 5b(m)(x − x0)

`2
: m6

(30)

where CŒ(m)=−[2(2 − m)/5+(1/5) `4m2 − m+1], and

lu, 3=−[1
2 (2 − m) − `4m2 − m+1] b(m)2. (31)

Figure 7 shows the lowest three eigenvalues for the operators L̂[u <
u ]

and L̂[u >
u ], where u <

u (u >
u ) indicates the transition state below (above) ac.

This figure illustrates the evolution of the eigenvalues (l <
± 1 and l >

3 ) that
control the formal prefactor divergence as a passes through ac. We note in
particular the merging of the second and third eigenvalues of L̂[u >

u ] as
a Q a

+
c , consistent with the double degeneracy of the corresponding eigen-

function when a < ac. The eigenvalues are everywhere continuous. Figure 8
displays the behavior of the full determinant ratio above ac.

_+

2 4 6 8 10

-2

2

4

6

l

λ

λ

λ

λ
1

1λ

0
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3

<

<

>

>

>

Fig. 7. Behavior of the lowest three eigenvalues of the operators L̂[u <
u ] and L̂[u >

u ]. The
vertical dashed line is a=ac. The eigenvalues l <

n correspond to n=0, ± 1 of Eq. (15). Com-
putation of the three lowest eigenvalues l >

1, 2, 3 in the a > ac region is given in the text. The bold
curve corresponding to l <

± 1 reflects its double degeneracy.
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Fig. 8. Behavior of the ratio of the eigenvalue spectrum above ac.

4.3. Interpretation of the Prefactor Divergence

The formal divergence of the Kramers rate prefactor at a critical
length lc (cf. Fig. 5) requires interpretation. It is interesting that a prefactor
divergence was also found (28, 29) in a completely different set of systems,
namely spatially homogeneous (i.e., zero-dimensional) systems out of equi-
librium, i.e., in which detailed balance is not satisfied in the stationary
state. That divergence arose from an entirely different reason: the appear-
ance of a caustic singularity in the vicinity of the most probable exit path as
a parameter in the drift field varied. The caustic singularity arises from the
unfolding of a boundary catastrophe; a detailed analysis in given in ref. 31.
In contrast, the problem considered here is that of a spatially extended
system in equilibrium, so no such singularities can be present. Moreover,
no parameter in the stochastic differential equations describing the time
evolution of the system is being varied in the case under discussion here;
rather, the variation is in the length of the interval on which the field is
defined. The ‘‘phase transitions’’ in the stochastic exit problem in the two
classes of systems are therefore physically unrelated.

What does it mean for the prefactor to (formally) diverge? In fact, at
no lengthscale is the true prefactor infinite, for any E > 0. Indeed, given that
the analysis presented here is, strictly speaking, valid only asymptotically as
E Q 0, the escape rate is always small where the above results are applicable.
What the formal divergence of the prefactor does mean is that the escape
behavior becomes increasingly anomalous as ac is approached, and it is
asymptotically non-Arrhenius exactly at ac.
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That is, when a=ac the true rate prefactor should scale as a (negative)
power of E for all E Q 0. As in refs. 28 and 29, this can be treated quantitati-
vely by studying the ‘‘splayout’’ of the ‘‘tube’’ within which fluctuations are
largely confined, as the saddle is approached. ‘‘Splayout’’ here simply means
that the fluctuational tube width, which for a ] ac is O(E1/2), becomes O(Ea),
with a < 1/2, as the saddle is approached when a=ac. In the model studied
in refs. 28 and 29, the Lagrangian manifold comprising optimal fluctuational
trajectories has a more complicated behavior than in the model under study
here. As a result, in refs. 28 and 29 fluctuations near the saddle occur on all
lengthscales, while in the present case fluctuations near the saddle occur on a
definite lengthscale, but one larger than O(E1/2), leading to non-Arrhenius
behavior for all E Q 0. Details will be presented in ref. 30.

Our main interest here is in the region close to ac, where the rate pre-
factor C0 is growing anomalously large (but remains everywhere finite for
all a strictly away from ac). The formulas given here are valid for E suffi-
ciently small so that the contribution from the quadratic fluctuations about
the relevant extremal state of H[f] dominates the action. As long as all
eigenvalues of L̂[uu] are nonzero (excluding the zero mode arising from
translational symmetry, which may be extracted), and the norms of the
corresponding eigenfunctions are bounded away from zero, the prefactor
formula applies, but in an E-region driven to zero as a Q ac by the rate of
vanishing of the eigenvalue(s) of smallest magnitude. Therefore, as a Q ac

from either side, the Kramers rate formula applies when E scales to zero at

llc

ε

(lc l(– –l)1/2 1/2)cl

Fig. 9. A sketch of the scaling of the regions where the Arrhenius prefactor formulae given
by Eqs. (16) and (29) are valid, when a is very close to ac. For fixed a, E must be small enough
so that it is below the shaded region for these formulae to apply. Non-Arrhenius behavior is
expected in the shaded region. Because this figure is intended to illustrate only the rate of
scaling of E with |l − lc | so that the Kramers rate formula is valid, the axes are unmarked
(except for a=ac, where the E-range has shrunk to zero).
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least as fast as |a − ac |1/2 (of course, the constraints already mentioned in
Section 1 must continue to hold as well). More precisely, the criterion con-
sidered here (which is necessary but not a priori sufficient) for Arrhenius
behavior to hold on either side of ac is that the noise strength E be small
compared to lmOgm | gmP, where lm is the eigenvalue of smallest magnitude
and gm its corresponding eigenfunction(s). This criterion arises from the
condition, used in the derivation of Eq. (11), that the noise strength be
small compared to the size of quadratic fluctuations about the extremal
action. For a slightly below ac, these quantities are given in Section 4.1, and
above ac, by Eqs. (30) and (31). The resulting computation is straightfor-
ward and the resulting E-region is sketched in Fig. 9 (in the dimensionless
units used here, the coefficients of the scaling terms are of O(1)).

The result is that, for fixed a close to ac, there should be a crossover
from non-Arrhenius to Arrhenius behavior at sufficiently weak noise
strength (cf. ref. 29). The figure represents a type of ‘‘Ginzburg criterion’’
that describes, at a given a near ac, how far down as E Q 0 the non-Arrhenius
behavior persists. It should be emphasized that Fig. 9 sets an upper bound on
the scaling of the region of E vs. |a−ac |, below which asymptotic Arrhenius
behavior sets in. It would be interesting to consider also the behavior at very
small but fixed noise as a increases thorugh ac. Here one would observe a
crossover from Arrhenius to non-Arrhenius behavior and back again as a

passes through the critical region. An interesting problem for future consid-
eration is to analyze this phenomenon in greater quantitative detail.

To summarize: strictly away from ac, the prefactor formulae Eqs. (16)
and (29) hold (corresponding to Arrhenius behavior of the rate), but in an
increasingly narrow range of E as ac is approached. A crossover from non-
Arrhenius to Arrhenius behavior as E Q 0 should be observed, along a
boundary that scales as shown in Fig. 9. Strictly at ac, the formulae do not
hold: the prefactor is finite, but acquires a power-law (in E) character. That
is, the rate behavior is non-Arrhenius all the way down to E Q 0. This
(boundary condition-independent) non-Arrhenius behavior at criticality
should be distinguished from the (noncritical) non-Arrhenius behavior
strictly above ac that appears only when translation-invariant boundary
conditions, such as periodic, are used.

5. ASYMMETRIC QUARTIC POTENTIALS

In this section we will consider more general asymmetric potentials of
the form

V(u)=−(1/2) u2 − (1/3) u3+(1/4) u4 (32)

as shown in Fig. 10.
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Fig. 10. The asymmetric quartic potential of Eq. (32).

We will consider only the small-a regime, and show that a transition at
finite ac exists with a divergence of the prefactor as a Q ac.

Because the prefactor depends on the curvature of the potential near
its minimum, different prefactors (and of course activation energies) corre-
spond to the two minima u− =1/2 − `5/2 % −0.62 and u+=1/2+`5/2
% 1.62. The formulae shown here correspond to u− ; corresponding for-
mulae for escape from the potential minimum from u+ are obtained by
replacing the constant a− =|1+2u− − 3u2

− | % 1.38 with a+=|1+2u+ − 3u2
+|

% 3.62. The critical length ac is the same in the two cases.
An analysis similar to that of Section 4.1 yields

C0=
(a− )1/4

2p

sinh(a− a/2)
sin(a/2)

(33)

so ac=2p and, as before, the prefactor again diverges as (1 − a/ac)−1 as
a Q a

−
c , as shown in Fig. 11.

Γ0
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Fig. 11. The prefactor C0 of Eq. (33) for a < ac.
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6. CONCLUSION

We have found an explicit solution of the Kramers escape rate in an
asymmetric f3 field theory of the Ginzburg–Landau form. This result, and
the brief discussion in Section 5 of more general asymmetric potentials,
suggests that the critical behavior found in ref. 20 might hold for a more
general class of models than those with a high degree of symmetry. How
widespread the transition phenomenon is remains uncertain, but it appears
to hold at least for arbitrary smooth potentials with terms up to and
including f4. It would be interesting to find models with other types of
behaviors. One interesting possibility, discussed in ref. 20, is a class of
models that display a first-order transition: for example, a discontinuity in
the derivative of the activation barrier height with respect to the interval
length, at a critical length. A possible candidate for such a model is the
sixth-degree Ginzburg–Landau potential of Kuznetsov and Tinyakov, (19)

but a detailed analysis of its transition behavior remains to be done.
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